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Abstract

Necessary ana sufficient conditions for the existence of simple graphs

: with degrees from prescribed intervils, are given.
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All graphs in this paper are finite and have no loops and no multiple

I 1. Introduction

edges. For undefined terms see [u4]. 1
The degree, d(p) = d(p,G) of a vertex p in an undirected graph G, is i

3 the number of edges of G, inciZent with p. The outdegree d+(p,D) (indegree

d"(p,D)) of a vertex p in a directed grapn D, is the number of edges of

D, having p az an initial (terminal) vertex.

Using flows, L. R. Ford and D. R. Fulkerson [2, Theorem 11.1] give nec-

e

essary and sufficient conditions under which a directed graph D has a subgraph

DTSRV~ VOV S PSS ROl SRTL YO R

whose outdegrees and indegrees lie in preacribed intervals. The aim of this

paper is to rtudy analogue conditions for undirected graphs.

4 2. Hotation

A graph is considered to be undirected unless otherwise specified. All

graphs in this paper have the same set of vertices {pl,...,pn}. A graph ©

[ is identified with its set of edges; for example, the complete graph on n

sl ey

vertices is Kn = {(pi,pj)ll < i< j<n}.

oy

T

Definition: A semi-graph W is a function from the edges of Kn mton i
{O,%3l}. The degree of a vertex p in a semi-gra>h W is d(p,W) = J w(p,pi).
i=1 ;
A semi-graph W 1is a semi-subgraph of a graph G if (pi,pj) G = 1
W(p.,p.) = 0.
"(p;.p3) :
[ Notation: Throughout, ¢ and ¢ will denote two sequences (al,...,aq) and

(bl""’bn)’ respectively, of non-negative integers, such that a; < bi for

i=1,...,n.

Definition: A graph H (semi-graph H) isa [¢,¢]-realization (semi-[¢,y]-

realization) if a; < d(pi,H) < bi for i=1,...,n. A [¢,y]-factor

el
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(semi-[¢,y)-factor), of a given graph G, is a subgraph (semi-subgraph) of G

which is a [¢,¢]-realization (semi-[¢,y]-realization). The prefix [¢,¥]-

will sometimes be omitted.

Definition: For a directed _raph D, and a set S < {1,...,n}, 6*(p,5) is
the number of edges of D, going from p to a vertex in S* = {pi|i € S},
and & (p,S) is the number of edges of D, going from a vertex of S* to [.
Similarly, for a graph G, 6&(p,S) is the uurn,:r of edges of G, connecting

p to vertices in S%.

3. Weighted subgraphs

We wilil need the following known theorem:

Theorem 3.1: [2, Theorem 11.1]. Suppose D is a directed graph on n vertices

V,,...,v_, and numbers a., b., a:, b! are given (i = 1,...,n), such that
1 n i i i i
a; :_bi, a;_i b; for i =1,...,n. Then D has a subgraph E for whicn
a, <d"(v.,E) <b, (i=1,...,n) (3.1)
= i = ki
and
a, <d(v,,E) <b, (i=1,...,n) (3.2)
i-— i - "1
if and only if for all S € {1,...,n}
n )
! a. < I ninlb,,6 (v.,S)] (3.3)
ies ! j=1 ] J

and




n
I aj<] min[bj,c'(vj,s)]. (3.4)
ieS j=1

Lemma 3.1: If S, Tc{l,...,n}, and S NT=4¢, then for any graph G

I dp,,6) < J d(p.,6) + s(n-1-t),
ies . ieT N

where s and t are the cardinalities of S and T, respectively.

Proof: Because G 1is simple,
¥ d(p;,6) - s(s-1) < Card{(pi,pj) e Glies, jys)
ies

< Z min(s,d(p.,G)) < Z d(p.,G) + stn-s-t),.
ids 2 ieT .

Lemmé¢ 3.2: (Compare [S5, Lemma ?.2).. Let VW be a semi-graph, and let S # ¢

and T be two disjoint subsets of il = {1,...,n}. Then, if

ieS, jecN-T = w(pi,pj) =1 (3.5)
- =] ! = .

N-S => i(pi,pj) 0, (3.6)

) d(p, ) + s(n-1-t). (3.7)

ieT

AoGa
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Proof: By condition (3.5), Z d(pi,W) - s(s-1) = Z

l i€s ieS
jeEN-S

w(pi,pj), and by
condition (3.5), the last sum is equal to
) w(pi,pj) + s(n-s-t) = § d(p,,W) + s(n-s-t).

ieS
jeT

ieT

Definition: Let C = [pi seeeaPy ] be a path or a cycle in a semi-graph W,
L L — l 2
1 x . . .
N such that W = 7 on all its edges. Alternating C will mean the changing of

. W on C, by alternatively adding and subtracting % along C. In a pesitive

3 (negative) alternation we begin at P; > (or at another specified vertex), by
1

adding (subtracting)

LS TN

-t Remark: If C is a path, then d(pil.w) and d(pig,W) will be changed by
% , by an alternation. If C is an odd cycle, i.e. cycle with odd number

By of edges, then d(pil,w) will be increased, or decreased by 1, depending -n
whether the alternation is positive or negative. In any alternation, W becomes

integral on C, and the degrees of Py »ee Py do not change. If C is
2 £-1
o even, i.e. C has even number of edges, then the degree of Ps also does not
1

change.

.- Lemma 3.3: A graph C has a semi-[¢,¢]-factor W such that for 1= 1,...,Nn
d(pi,W) is integer (3.8)
If and only if fo~ all S Cl

{ n
! ] a. < | min(by.8(p;.S)). (3.9)

ieS j=1
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Proof: Let D be the symmetric directed graph which is obtained from G by
replacing each edge (pi,pj) by two directed edges (one from P; to pj and
one from pj to pi). Since 6(pi,S) = 6+(pi’8) z 6-(pi,S) for i =1,...,n,
and for all S CH, it follows frc: Theorem 3.1, that D has a directed

subgraph E for which

+ - :
a, <d (pi,E),d (pi,E) :-bi’ (i=1,...,L), (3.10)
if and only if condition (3.9) holds for ¢,y and G.
Suppose first that G has a semi-[¢,p]-factor W which fulfills condi-
. 1
-8- = . . IR ) . = = s 9 . = 3 . = =}
tion (3.8). Let W, {(pl,p3)|W(p1 p)) 1} and W, = {(p; p])lw(p1 P]) 51
By condition (3.8), each component of W, is Lulerian. By orienting each

2

component of W, along an Eulerian cycle, and by replacing each edge of W

2 1

by two directed edges (one in each direction) we obtain a directed subgraph
E of D which fulfills condition (3.10). Hence condition (3.9) holds for
9,y and G.

Suppose now that D has a subgraph E, for which condition (3.10) holds.

Define

i b (pj,pj),(pj,pi) e E

W(pi,pj) = 0 if (pi,pj),(pj,pi) AL

L

1
3 = & T J = { L . sP. = =}.
Clearly W is a semi-[¢,y]-factor of G. Iet L2 .(pi,pj)lw(pl p]) 2}

otherwise

|-

We will show that if condition (3.8) does not hold, then it is possible to

change W, to reduce W

2




T T T VR T TR T —r -

Notice that d(pi,W) is an integer iff d(pi,wz) is even. Thus, if for

somz j, d(pj,W) is not integer, then there exists an index k such that

pj and p, are in the same component of w2, and d(pk,w) is not integer.

- % . Hence,

ST

1 1
Of course, a, + = < d(p.,W) <b. - =
A (p] ) < bJ and a

3 s :_d(pk,w) <b

k

ty alternating any path in w2, between pj and P we reduce wz.

4. The main theorems ;
3

Theorem 4.1: Let ¢ = (al,...,an), v = (bl,...,bn) be two sequences of non- i

negative integers, such that a; < bi for 1 =1,... n. Then a graph G has

a [¢,v])-factor if and only if for all S CN

2 24 <

min(b.,8(p..S)). (3.9)
ieS j ] J

e

1

Proof: If G has a [¢,"]J-factor, then condition (3.9) holds, as we showed

in the proof of Lemma 3.3. To prove the other direction, suppose condition (3.9)

holds and let W be a semi-[¢,p)-factor of G, for which condition (3.8) holds.
- s . . .

Let w2 = {(pi,pj)IW(pi,pj) = 2}. Each component of w2 is Culerian, and

hence has an Eulerian cycle. If w2 £ %, let C = [pi ,...,pi ] be such
1 2
a cycle. If C 1is even we may reduce w2 by alternating C, either posi-

tively or negatively. If C = [p, ,...,p. ] is odd, then since a, <b,,
! o 1 1

either 1(p., ,W) > a, or d(p, ,W) < b, (or both). In the first case a
i i i i
1 1 1 1
negative alternation of C will reduce w2 and in the second case, a positive

alternation will reduce w2.

Hlotice that the ~trong inequalities a; < bi are nee.~d for the reduction

only for the alternation of odd cycles. Since the smallest odd cycle is a 1
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triangle we may allow an equality a; = bi in one or two indices i, in the

conditions of Theorem 4.1.

Theorem 4.2: Suppose ¢ # ¢y and ¢ 1is arranged in a non-increased order. Then,

a [¢,v]-realization exists if and only if

t— o o N B

a) for j =1,...,n

n
min(b.,j-1) + ] min(b,,3) (4.1)
S i - i
1 1=j+1

kbt s

:
" e~y
1]
A
1~

[
L]
i

and

b) there are no two disj>int sets S,T €N, S # #, for which

- ) a5 ¥ Y b, is odd, (4.2)
) iNT ieT *
- ) a, = ¥ b, + s(n-1-t), (4.3)
ies ifT
) and
a, = b, for 1ie U-S-T. (4.4)
i i

Proof: Condition (4.1) is a particular case of condition (3.9), where the

i

given graph is Kr' i

i

Suppose a [¢,v]-rearss.’ion exists and for S ,T ) €I such that S, 9

- and So n TO = ¢, conditions (4.2)-(4.4; hold. Then
so(n-l—to) = .2 a; - _Z b, < .2 d(pi'“) = .z d(pi,H) < so(n-l-to). i
I 1680 1cTO 1550 1cT0 H

(The last inequality fellows from Lemma 3.1.) Thus, i




d(pi,H) a, for i ¢ N-T

and d(pi,H) bi for i e T.

n
Hence, by condition (4.2), Z d(pi,H) is odd, a contradiction.
i=1
Suppose now that condition (4.1) holds for ¢ and ¥, out no [¢,p]-

realization exists. We will construct a pair of disjoint sets S,T €N, S # ¢,
for which conditions (4.2)-(4.4) hold.

By Lemma 3.3 and the proof of Theorem 4.1, there exists a semi-[¢,v]-

realization W such that d(pi,W) is an integer for i = 1,...,n, and such
- -1 )
that W2 = {(pi,pj)|W(pi,pj) = 2} has no even cycles. Suppose

¢, =Ip. 5-+.-5p. )} and ¢, = [p. ,...,p. ] are two odd Euleria. cycles in
SR ) ) 2 1 Ik

W.. If W(p. ,p. ) =1 we may reduce V_ by defining W(p, ,p. ) = O and
2 1 £ ) <k

making a positive alterration of both Cl and C2. (s2e Figure 1). A similar

o o
W = 1 (Before changing) 0, \\1 l// \0\
. v SR 0N 2 N
- - W= ) (Before changing) Cl /pil le\ C2 /
1\ /, \ /1
/ \ /
\_ o
o - 0
Figure 1

The numbers show the new values of W.

reduction is obtained if W(p, ,p. ) = O by setting W(p, ,p. ) = 1 and
o 1 h
making a negative alternation of tne cycles. Thus there exists a semi-[¢,v]-

realization W, in which W, = [pi PRI ) = C 1is an odd cycle. Fix W
1 L

for which W2 is maxinl vand fix C).

A B i sttt fag
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Let

1},

[%2]
"

1 v
{1|pi A 1, W(pi,pil) - TE W(pi,pig)

0}.

-3
1]

{1|pi Ay, Wpsop; ) = ... = Wip,.p, )
1l {
We have to show that if no [¢,¢]-realization exists, then conditions (&.2)-(4.4)
hold for S and T. We will show it, in a chain of 5 claims, the proofs of

which will be given at the end of the proof of the theorem.

Ll
—

Claim 1. If ie€S and j ¢ N-T, then W(pi’pj)

1"
o

Claim 2. If ie4 ~ %' je N-S, then W(pi,pj)

loJ o

“iaim 3. If i 4 S, then d(pi,w) i

e
1]
[+1]

Claim 4. If AT, then d(pi,W)

Claim 5. The cet S 1is not empty.
Using Lemma 3.2, claims 1, 2 and 5 imply the equa'lty | d(pi,w) = ¥ d(pi,W)

ies ieT

+ s(n-1-t). Claims 3 and % imply that ) a; = ) d(pi,w),

ieS ieS
) a, = ¥ d(p,,W), I b= ] a(p,,W), and for idSUT,
idT iAT ieT b ieT
a; = d(pi,w) = b.. Therefore conditions (%.3) and (4.4) hold for S and T
n
and since W has exactly one odd cycle on which W = % , the sum z d(pi,W)

i=1
is odd, and hence condition (%.2) also holds. Thus we have shown that if

no [¢é,¢)}-rcalization exists we cn find a pair S,T €N for which conditions
(4.2)-(4.4) hold.

To finish the proof we have only *o prove the 5 claims:

4
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Proof of claim 1: Since i€ S, (p,,pj) & W,. Suppose w(pi,pj) = 0. Then
i

P ———

on W, such that W(Pjapk) = 1. Let p,  be the consecutive vertex of Py,

g ]

along C. (See Figure 2). By redefining W(pk,pr) =1, W(pi,pj) = W(pjspk) =

1 . 2
W(pi,pr) = 5 we enlarge W,, a contradicticn to its maximality.

l by the construction of S, p:.l & w2. As j & T there exists a vertex pp
T 2
e

ri = [

- W = 1 (Before changing) / ~

1 # ™
. 3 'd

_ .- — —W = = (Before changing) ',,3/\ Hg
2 P P

.o I ‘G r \
. * + W = 0 (Before changing) i 1 {

LS

: \
; \
;H'“'#fﬂﬂﬁgh
P T

—
S
T T TN N F R TIN R O ST UL N Vg T v W L T -y S

Figure 2

The numbers show the new values of W.

Proof of claim 2: Similarly to the case of claim 1, if w(pi,pj) £ 0 for

'
S e wiab

ieT, je€N-S, then w(pi,pj) =1, pj & C, there exists k such that
- W(pj,pk) = 0 and if P, is the consecutive vertex of P> on C, then
oA _ . _ _ _ T :
T redefining H(pk,pr) = ¢ and ”(pi’pj) = w(pj,pk) E w(;i,pr) 5 chiarges
w2. (See Figure 3).
~N
7 d =
~ —————— W = 1 (Before changing) L p Ne
P R )
gt u
e — — W = £ (Before changing) a Py 2 /
2 \o !
: 1 \ /
*W = 0 (Before changing) 5 \_' g
N
13
Figure 3
The numbers show the new values of W.
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8 | ' Proof of claim 3: Suppose i & & and d(pi,W) < hi. If p; € C we may rcduce
B l W2 L7 a positive alternation o C, beginning at p1 (Compare to the proof 1
f of Theorem 4.1). If 128 § C then W(p.,pk) = 0 for some p, e C and ve may ]
3 ; I once more reduce w2, by a negative alternation of C, beginring at Py and 3
@
E by set w(pi,pk) = 1. (See Figure 4). In each case we obtain a semi-graph 3
I W' which never gets the value % , i.e. a3 [¢,p)-factor, a contradiction. i
1
a |
|~ i
. E - 1
3 3
2 T VAN ;
s N
] - — — == % «Refore changing) 0, \l\ 1
i s Ve
a B e ) 1
i = * W = 0 (Before changing) P W / 3
g 2 / 3
% - \ )0 3
2 . / |
E % -° \._' = g 4
3 :5 .. l 3
.- Figure u
Y The numbers show the new values of W.
Proof of claim 4: As in the case of claim 3, if d(pi,W) >a:, P; 4 C but

there exists an index k such that P €C and W(pi’pk) = 1. Thus we may

reduce W

- 2 by letting w(pi,pk) = 0 and by making a negative alternation

.. of C, beginning at Py

T T\ A B e L« . A Y VT SNETIO T
[]
.

- ——

Proof of claim 5:

keSUT. If k

d(pk.W) = b >

exists r € S such that w(pk,pr) = 1.

=

We assumed ¢ # ¥.

€ S,

> 0, and since W(pk,pj) = 0 for all j ¢ N-S, there

Let

In particular S

a #b

k

K

then there is nothing tc prove.

Claims 3 and 4 imply that

Then ‘

Cuppose k ¢ T.

is not empty.
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